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The objective of the present article is to call the attention of mathe- 

msticfsns, interested in applied problems. to 8n nnnsual formulstion of 

the problem of a small parameter in the equstions of the dynamics of non- 

linesr automatic systems, which, seemingly, c8n be fruitfully utilized 

for the development of a mathematically rigorous basis (to which the 

author l 8kes no pretense) for widely used approximate methods in the 

study of nonlinear automatic systems. 

The dynamics of automatic systems is frequently described bs a system 

of ordinary differential equations, which in genersl 8re nonlinear. 

We shall af5sume. for the sake of simplifying the presentation, that 

the system involves only one nonlinearity 

even though the discussions can be extended to the case of several non- 

linearities. In the case of one &&linearity, all remsining equations of 

t.he system whatever its complexity may be. are often reduced to one 

linear equation of a high order 

Were Q(p), R(p), S(p) are operator polynomials with constant coeffi- 

cients. f is the given external reaction. 

In automatic systems, it is necess8rg to take account of nonlinear- 

ities which differ considerably from the corresponding linear function 

Y = h, + k2px (for example, rely hysteresis, some of the saturation 
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type, slack, free play, and many others). For the variable r, which 
occurs in the nonlinear term, one frequently observes in practice pro- 
cesses which are nearly sinusoidal (periodic or decaying) even though 
for the variable y. and also for the other variables of the sjsten, the 
process may be far from a sinusoidal nature (for example, rectangular In 
a relay system). 

This important peculiarity will be utilized in what follows. le will 
consider automatic systems which are known as “coarse” systems (in the 
terminology of Andronov). 

1. On the periodic solution of a homogeneous equations. 
Let us first consider the homogeneous equation 

In looking for a periodic eolution for the variable x, we assupe that 

x = xl + 82 (t) (x, = A, sin Q,t) v.3 

Here z(t) is an arbitrary bounded function of time, c is a small para- 
meter. 

In the application of quasilinear analysis, one selects for the non- 
linear function y = RX, px) frequently the form 

Y = hzs + &P i- Pf @, PX) (I.31 

where p is a small parameter. In other words, one assumes that the solu- 
tions for all variables of the given system are close to the solutions 
of some equivalent linear system. As was already mentioned, this is not 
justified for automatic systems with strong nonlinearities. Therefore, 
we should not use the expression (1.3) which is frequently used in other 
quasilinear problems, or else we must not treat g as a small parameter. 

We shall make use of the fact that only the solution for n (1.2) is 
close to the linear one, and we will write for the solution y the ex- 
pression 

Y = F CQ, PX,) + scf, (9 (1.4) 

i.e. we ass- that it is close to the true nonlinear function taken 
from the found approximate solution x1 for the variable x. 

Furthermore, in practical computations of automatic systems, one 
usually does not introduce explicitly the Expression (1.41, but one 
makes use of the approximate expression of the form y = k,r + kzpx, 
dropping pffx, pr) even though it is obvious that it is not small. One 
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thus obtains a satisfactory result as a first approximation which, in 
the majority of cases, turns out to be good enough in practice, both in 
the qualitative and quantitative aspects. It is known (see, for example, 
[l 1) that such an approach to the approximate solution coincides in 
automatics with the introduction of a postulate on the presence within 
the system of the quality of a filter of the linear part (1.1) which can 
be written in the form 

(1.5) 

Here k stands 
or k = 3, 5, . . . 

We shall show 

for the orders of the higher harmonics, k = 2, 3, . . . . 

by means of the simplest mathematical arguments how one 
can connect the statements (1.2) and (1.4) with each other, and also 
with the physical postulate on the property of the filter (1.5). Hereby 
one, seemingly, obtains also a good explanation of the fact that the 
direct utilization of an expression of the type y = k,x + kzpx (harmonic 
balance, harmonic linearization, describing function, etc.) for an 
obviously not small p in (1.3), yields a satisfactory result in the first 
approximation, in spite of the seemingly unjustifiability of such a soln- 
tion. 

The first incomplete attempt in this direction was made in [2 1. 

2. Construction of the periodic solution. Thus we assume 
that for the variable n in the given system (1.1) there exists a periodic 
solution of the type (1.21 with still unknown A,, s1, and cz(t). 

Let us express the given nonlinear function y = F(x, px) in the form 

Y = F (~1, ~“1) + IF (xi+ sz, PI+ ~2) -F (21, Ml 

The first term can be expanded into a Fourier series 

F (x1, pq) = F, + C sin S&t + B cos Q,t + s Fk (t) 
Ii=2 

(2.1) 

(2.2) 

in which the higher harmonics Fk are small. 

The expression which is enclosed in the square brackets in the 
Formula (2.1) can be expressed by the use of Taylor’s series in the form 

=EI 1 &F @I, ~“1) z + & F (51, pz,) pz] + e2 I. . .] + 91.. .1 -I-. . . (2.3) 



Features of introducing a small parareter 85 

This expression will be small if the partial derivatives with respect 

to x and px are bounded. This will be true for continuous nonlinear 

functions F(x, px) that occur in real automatic systems.,One can depend 

on the smallness of the bression 

(2.3) also for discontinuous non- 

linear functions met in practical 

applications, for example, in relay 

systems, lwhich the indicated deriva- 

tives will be delta functions, This 

is easily seen in the example given 

in the figure. ‘lhe increment c z (the 

curve 2) of the basic term x1 (curve 

1) causes only a small displacement 

Q 
4 of the graph 3 for F(xl, px,). 

Men these weak conditions are 

imposed on the nonlinear function, 

one obtains from (2.1) and (2.3) the 

fundamental expression (1.41, namely, 

y = F (2, ~4 = F (x,t P,) + ~a, (0 (2.4) 

where 

cfr (t) = a+ (t) + E& (q + AP, (t) + . . . (2.5) 

while Q,(t), $,,(t), . . . are determined by the corresponding expressions 
in the square brackets of the right-hand side of (2.31. As a result one 

obtains 

y=F,fCsin&,t+-B cos Q,t + $j Fh. (t) + ~0 (t) P-6) 
k=2 

where the Fk(t) are finite higher harmonics, C@ stands for the small 

terms of all frequencies. Hence, one does not assume here that the 
difference between the nonlinear function and the linear function is 

small. 

In this manner, the small term r@,(t 1 in the Formula (2.4) or in (1.4) 

symbolizes the small effect of only the higher (small) harmonics of the 

variable n on the form of the nonlinear oscillations y, but not the 

smallness of the higher harmonics which are generated by the nonlinear- 

ity itself when one substitutes into it the sinusoids (1.2), as would 

have been the case if the Expression (1.3) had been used with a small cr. 

In particular, for discontinuous nonlinear characteristics, the 

quantity cchat the points of discontinuities corresponds to small dis- 
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placements of the lines of jumps (for example, 3-4 in the figure). 

Let us now substitute (2.6) and (1.2) into the given Equation (1.1). 
We thus obtain 

O(P~~l+mP)~,+m)(C sin C&t + B cos i&t) + R (p) i FI, = 
k=2 

= - Q (P) ez-R(p)eQ, (2.7) 

If x1 = A, sin f+t represents the exact first harmonic of the periodic 
solution of (1.2), then the functions rz(t) and t@(t) can be represented 
in the form 00 

ez = 8 2 Ak Sin (k%t + qk) (2.8) 
k=z 

t3@ = i ej 5 @jk= f Sj@jo + i ej 5 Gjk Sin (k&&t + ‘8jk) 
j=l k=o j=l j=l k=l 

Besides that, we shall write 

(2.9) 

Fk = Nk Sin (kS2,t + qk) (2.10) 

where in the general case k = 2, 3, . . . . while in a particular case k = 
3, 5, . . . when the nonlinearity of (1.1) is an odd function of z and 
does not depend on px. The quantities NC are finite, since the nonlinear- 
ity is a real one but 

Nh.30 when k+m (2.11) 

From (2.7) we now obtain a number of exact equations for the corre- 
sponding harmonics 

Fo=-eQ1,-e20,0-... (2.12) 

Q (P) XI+ R (P) (C sin C&t + B cos C&t) =- R (p) e(Dll-R (p) e20zl--..~ (2.13) 

Q (p) e&sin (k%t + (pk) + R (P) Nk Sin W-&t + tlk) = 

= -R((p)e@>,k--R((p)S’(&k-. . . (k = 2,3, . . .) (2.14) 

‘Ihe first of these equations (2.12) gives information only about the 
smallness of the constant component of the Fourier series. ‘Ihis implies 
the requirement on the symmetry (with an accuracy c) of the nonlinearity 

2n 

s 
F(Asin$, AQcos+)d$=O (2.15) 

0 

ibis restriction can be removed (see below, Section 4). The Equations 
(2.13) and (2.14) are more important. 
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‘Ihe Equation (2.13) for the exact first harmonic x1 = A, sin S&t con- 

tains on the right-hand side small terms. We shall neglect these small 

terms in determining the approximate periodic solution which we will de- 

note by 
5* = AsinQt (2.16) 

We thus obtain a known equation for the approximate determination of the 

periodic solution: 

where 

(2.17) 

q‘ = $ = l& 2n s F (A sin $, Ai’2 cos 9) cos $ dg 
0 

Next, since the quantities Nk in the equations for the higher 

harmonics (2.14) are finite (at least for some values of k), the quanti- 

ties 

1ggI (k = 2,3, . . .) 

must be of order c, at least, for it follows from (2.14) that 

eAk sin (M&t + qk) = - 
\$$$I 

Nk sin (kQ,t + qk + Pk) - . . . 

where 

$& = arg {a 

R (22) 
At the same time, the quantity Q 

I I 
is finite since 

from (2.17) that 

sin Qt = - 
I I 
G Vmsin (Qt + T + P) 

where 

p = arg & 

Comparing these two results (and replacing in the first 
the exact C$ by the approximate Cl, which is inessential in 

case) we come to the conclusion that the equation holds 

it follows 

one of them 
the given 
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where the ck are arbitrary finite positive numbers. nis is an important 
condition which must be satisfied by the initial Equation (1.X), if one 
is to be able to find a solution of the form (1.2) in the presence of a 
strong nonlinearity (1.1). ft corresponds to the above mentioned pro- 
perty of a filter (1.5) of the linear part of the system (1.1). One can 
verify whether this condition is satisfied after one finds the frequency 
fi of the approximate solution (2.16). 

From what has been said there follow all published methods for the 
computation of auto-oscillations in nonlinear automatic systems on the 
basis of the first harmonic by means of the harmonic linearization, the 
harmonic balance or describing functions. All of them correspond to the 
equation of the first approximation (2.17) (see for example [3 I). 

Tbe following observations are here of basic importance. ‘Ihe expres- 
sion 4X* + ($/a)& in Equation (2.17) corresponds to the linear terms 
klu -t k,ps in Formula (1.3). But from what has been said, it is clear 
that we restrict ourselves to these terms in the first approximation not 
because rf(x, px) is small, but because finite higher harmonies do 
enter into the approximate Equation (2.13). These higher harmonics 
generated by the strong nonlinearity and are contained, therefore, 
the term IFf(n, pr) of the Formula (1.3) or in the Expression F(xl, 

of the Formula (1.4). ‘These higher harmonics do not enter into the 
approximate Equation (2.17) because this equation is obtained from 

not 
are 
in 

PQ 

the 
exact Equation (2.13) of the first harmonic. The approximate bation 
(2.17) must in this connection be considered as the first harmonic of 
the sought periodic solution, which is only for one variable x close to 

the true periodic solution. For the other variables of such a system, 
the first harmonic (for example the curve 5 in the figure) is far from 
the periodic solution. 

All derivations were made assuming the existence of a periodic solu- 
tion (1.2). Ihe approximate Equation (2.17) can, however, be justified 
also in the case when the function z(t) is an arbitrary (hounded) fun+ 
tion, i.e. when the exact solution is not periodic but nearly SO. 

3. Further realization of the result obtained. Making use 
of the equations for the higher harmonies (2.4), one can develop the 
obtained approximate solution. Taking into account the condition (2,X!), 
one can drop, on the exact Equations (2.14), the right-hand sides (in- 
finitesimals of higher order). Further, we replace the exact s1, by the 

approximate value !C? of the frequency, and express the amplitudes of the 
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higher’harmonics CA, in fractions of the already found approximate value 
of the amplitude A of the first harmonic, i.e. CA, = akA where 6, is a 
small quantity that has to be evaluated. Each of the higher harmonics of 
the variable x can then, in accordance with (2.14), be determined 
separately and approximately in the form 

where 

rk = &A sin (kQt + (pk) (k =2,3,. . .) (34 

whereby 

2n 

rk = - fii \F(Asinq, AQcos$)sinkgdg 
0 

2n 

Sk = gj 5 F (A sin $, AQ cos 9) cos kg d$ 
0 

(3.3) 

After this, one can refine the first harmonic by taking into account 
the term with 6 to the first degree in (2.13). This gives the increments 

2% 

Aq=&[[& F(s*, pX*)i xk + &F'(z*, &'x*)i pz,]sin$d$ 
0 k=2 k=2 

2n 

&‘=A \ [$ F (X*, P”*) i xk + 

0 k=a 

a&F(x*, PX’); j=k]cosgdrp 

(3.4) 

By substituting these into the previous equation of the first approxima- 
tion (2.17), one can obtain an improved value of the amplitude A, and of 
the frequency Q, of the first harmonic (for the computational procedure 
see 13 I ). For practical computations with the Formulas (3.4), we re- 
strict ourselves to some finite number of harmonics n, which is entirely 
permissible because of the property (2.11). 

As a final result of such an approximation process, one may write for 
the nonlinear function (1.1) the following approximate expression: 

(3.5) 

Y = A, I(q + Aq) sin W + (q’ + Aq’) cos S&t + 5 (win k&t +sk coskQ,t)] 
k=0 

in which the finite higher harmonics really occur, in spite of their 
smallness in the variable x 
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x = A, bin ~,t + i bk sin (k~,t t_ (pk)] 
k-a 

(3.6) 

This is a computational realization of the scheme described in 
Section 2 for the construction of a periodic solution. 

4. Some generalizations. An analogous approach can be used for 
the construction of a solution in a number of other important practical 
problems. The simplest ones of them are: single frequency forced oscilla- 
tions under a periodic external force, oscillatory transient processes 
with gradually changing frequency and a decay index, and also nonsym- 
metric auto-oscillations when the condition (2.15) is not fulfilled. 

‘Ihe approximate investigation of processes with two frequencies in 
automatic systems on the basis of the harmonic linearization of the non- 
linearity, is of special importance. The point is that the most typical 
cases of nonlinear automatic systems are those when the auto-oscilla- 
tions or the forced oscillations are vibrational processes (of relative- 
ly high frequency) that are superimposed upon the basic slowly changing 
control processes (of relatively low frequency). Due to the nonlinearity 
of the system, both types of processes affect each other considerably. 

Here one considers a nonlinear equation of the form 

and looks for an approximate solution* of the form 

x=x0+x*, x* = A sin Qt’ (4.2) 

Here X* is a vibrational (auto-oscillatory) component, z” is a slowly 
changing component, i.e. x0 changes little during the oscillation period 
of x+ ; the external force f(t) is assumed to be a slowly changing one. 
?he time t’ is measured within each period separately. 

As above, the nonlinearity is given in the form 

F (x, P) = F” + (q + +)x*+ 5 Fk(t)+e@(t) (4.3) 
k=a 

but with a finite (nonzero) value of F”. In the general case, we have a 
definite expression for each nonlinearity 

l Yore precisely, I: = x0 + x1 + C z. 
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P” = F”(4, A, S-L?), q = q(x“, A, Q), q’ = q’(x”, A, 9) (4.4) 

where all the quantities vary slowly with x0. 

The finite higher harmonics FC(t), which enter into (4.3), will again, 
as above, not play any role in the approximate equation for the variable 

x. After the substitution of (4.3) into (4.1), the latter equation can 

be broken up into two interconnected equations of first approximation 

Q(P)~“+~(P)F”=wv9 [o(P)+II(P)(q+%P)]x*=o (4.5) 

which correspond to the slowly changing component and to the auto- 

oscillatory, vibrational component. In this separation of equations, the 

nonlinear properties are essentially preserved as well as the nonvalidity 

of the principle of superposition of solutions, because the nonlinear 

interconnection is preserved between the quantities (4.4) that are con- 

tained in these equations. 

From the second Equation (4.5) one can determine A and the frequency 

61 as a function of x0. After this one can, with the aid of the first 

Eguation (4.4), determine the “displacement function” 

F” = @” (SO) (4. ‘3) 

With this substitution, the first Equation (4.5) takes on the form 

Q (14 2' + R (14 Q>" (x0) = S (~1 f (4.7) 

Hence, the displacement function @‘(x0) serves as a new nonlinearity 

with respect to the slowly changing signal in the presence of the vibra- 

tion superiqmsed in the signal. Ordinarily, the graph of the function 

@‘(no) is a smooth curve (even for nonsmooth and loop type nonlinear- 

ities) that can be linearized in the usual way as 

(4.8) 

Iben Equation (4.7) can be solved as a linear equation. One must, 

however, take account of the peculiarity of the coefficient K which 

essentially reflects the nonlinear property of the system. 

If the function cII”(x”) cannot be linearized in the usual way, and if 

it is desirable to investigate the nonlinear oscillations of the slowly 

changing component on the basis of the nonlinear Equation (4.7), then 

one can perform the harmonic linearization of the nonlinear function 
@“(x0). This will be a repeated harmonic linearization over a new, lower 

frequency. In this manner one actually investigates nonlinear free 
oscillations (if f = 0) of two frequencies, or mixed oscillations (if f 
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is periodic with a low frequency). 

In an analogous manner one can investigate processes in nonlinear 
systems with forced oscillations, and also random processes. ‘Ihis makes 
it possible to take into consideration the effect of vibrational and 
random interferences on the quality of work of automatic control systems 

‘Ibe solution of the listed problems with examples is described in [31. 

‘lhe practical effectiveness of this type of method holds great 
promise for the further development of the applied as well as of the 
mathematical side of problems in automatic control systems with restrict- 
ive conditions. The idea of the introduction of a small parameter, pre- 
sented in Section 2, may, seemingly, be fruitful also in the more complex 
problems indicated here. However, one may have to take recourse to 
certain auxiliary considerations which may take account of the peculiar- 
ities of these problems. 
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